40 research outputs found

    Constructions of Binary Optimal Locally Repairable Codes via Intersection Subspaces

    Full text link
    Locally repairable codes (LRCs), which can recover any symbol of a codeword by reading only a small number of other symbols, have been widely used in real-world distributed storage systems, such as Microsoft Azure Storage and Ceph Storage Cluster. Since binary linear LRCs can significantly reduce coding and decoding complexity, constructions of binary LRCs are of particular interest. The aim of this paper is to construct dimensional optimal binary locally repairable codes with disjoint local repair groups. We introduce how to connect intersection subspaces with binary locally repairable codes and construct dimensional optimal binary linear LRCs with locality 2b2^b (b≥3b\geq 3) and minimum distance d≥6d\geq 6 by employing intersection subspaces deduced from the direct sum. This method will sufficiently increase the number of possible repair groups of dimensional optimal LRCs, and thus efficiently expanding the range of the construction parameters while keeping the largest code rates compared with all known binary linear LRCs with minimum distance d≥6d\geq 6 and locality 2b2^b (b≥3b\geq 3).Comment: Accepted for publication in the SCIENCE CHINA Information Science

    Effect of Baicalin on inflammatory mediator levels and microcirculation disturbance in rats with severe acute pancreatitis

    Get PDF
    Objective: To investigate the effect of Bacailin on inflammatory mediator levels and microcirculation disturbance in severe acute pancreatitis (SAP) rats and explore its therapeutic mechanism on this disease. Methods: SAP model rats were randomly divided into model control group and Baicalin treated group, 45 rats in each group. The same number of normal rats were included in sham-operated group. These groups were further subdivided into 3 h, 6 h and 12 h subgroups, respectively (15 rats in each subgroup). At 3, 6 and 12 hours after operation, rats were killed to conduct the following experiments: (1) to examine the mortality rates of rats, the ascites volume and pancreatic pathological changes in each group; (2) to determine the contents of amylase, PLA~2~, TXB~2~, PGE~2~, PAF and IL-1[beta]; in blood as well as the changes in blood viscosity.Results: (1) Compared to model control group, treatment with Baicalin is able to improve the pathological damage of the pancreas, lower the contents of amylase and multiple inflammatory mediators in blood, decrease the amount of ascitic fluid and reduce the mortality rates of SAP rats; (2) at 3 hours after operation, the low-shear whole blood viscosity in Baicalin treated group was significantly lower than that in model control group;at 12 hours after operation, both the high-shear and low-shear whole blood viscosity in Baicalin treated group were also significantly lower than those in model control group.Conclusion: Baicalin, as a new drug, has good prospects in the treatment of SAP since it can exert therapeutic effects on this disease through inhibiting the production of inflammatory mediators, lowering blood viscosity, improving microcirculation and mitigating the pathological damage of the pancreas

    High-Efficiency Transduction of Liver Cancer Cells by Recombinant Adeno-Associated Virus Serotype 3 Vectors

    Get PDF
    Recombinant vectors based on a non-pathogenic human parvovirus, the adeno-associated virus 2 (AAV2) have been developed, and are currently in use in a number of gene therapy clinical trials. More recently, a number of additional AAV serotypes have also been isolated, which have been shown to exhibit selective tissue-tropism in various small and large animal models1. Of the 10 most commonly used AAV serotypes, AAV3 is by far the least efficient in transducing cells and tissues in vitro as well as in vivo

    Enhanced Transgene Expression from Recombinant Single-Stranded D-Sequence-Substituted Adeno-Associated Virus Vectors in Human Cell Lines In Vitro and in Murine Hepatocytes In Vivo

    Get PDF
    ABSTRACT We have previously reported that the removal of a 20-nucleotide sequence, termed the D sequence, from both ends of the inverted terminal repeats (ITRs) in the adeno-associated virus serotype 2 (AAV2) genome significantly impairs rescue, replication, and encapsidation of the viral genomes (X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Mol Biol 250:573–580, 1995; X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Virol 70:1668–1677, 1996). Here we describe that replacement of only one D sequence in either ITR restores each of these functions, but DNA strands of only single polarity are encapsidated in mature progeny virions. Since most commonly used recombinant AAV vectors contain a single-stranded DNA (ssDNA), which is transcriptionally inactive, efficient transgene expression from AAV vectors is dependent upon viral second-strand DNA synthesis. We have also identified a transcription suppressor sequence in one of the D sequences, which shares homology with the binding site for the cellular NF-κB-repressing factor (NRF). The removal of this D sequence from, and replacement with a sequence containing putative binding sites for transcription factors in, single-stranded AAV (ssAAV) vectors significantly augments transgene expression both in human cell lines in vitro and in murine hepatocytes in vivo . The development of these genome-modified ssAAV vectors has implications not only for the basic biology of AAV but also for the optimal use of these vectors in human gene therapy. IMPORTANCE The results of the studies described here not only have provided novel insights into some of the critical steps in the life cycle of a human virus, the adeno-associated virus (AAV), that causes no known disease but have also led to the development of novel recombinant AAV vectors which are more efficient in allowing increased levels of gene expression. Thus, these studies have significant implications for the potential use of these novel AAV vectors in human gene therapy

    Data_Sheet_1_Social Q&A communities: A multi-factor study of the influence of users’ knowledge sharing behaviors.PDF

    No full text
    Recently, social Q&A communities have grown increasingly popular, serving as a primary platform for people to learn and share information. Nonetheless, fewer knowledge producers in these communities are significant than knowledge consumers. Thus, promoting users’ participation in knowledge sharing is a challenge for managers of social Q&A communities. Even though many scholars have studied factors influencing willingness to share knowledge, they tend to start with one theory and ignore the impact of several factors on behaviors. Thus, this manuscript presents a multi-factor model based on three dimensions of technology, cognition, and security to explore the effects of the six factors of perceived ease of use and perceived usefulness, perceived behavioral control and subjective norms, perceived security, and perceived privacy in terms of the three knowledge sharing methods of browsing including like and favorite, publishing and replying, and to compare users’ willingness to use the three knowledge sharing methods. A total of 482 questionnaires were collected online, and the hypotheses were tested and analyzed using structural equation modeling (SEM). According to the results, the factors affecting different sharing methods are not the same. Perceived behavioral control and perceived security can have a significant influence on their willingness to browse, users’ willingness to publish and reply to posts is significantly influenced by their perception of behavioral control and subjective norms, while perceived usefulness also affects their willingness to respond, it can be seen that cognition is the most important factor affecting users’ knowledge sharing among the three dimensions. In addition, users’ willingness to browse is significantly greater than their willingness to reply, and their willingness to post is the lowest.</p

    Anti-Biofilm Activities of Chinese Poplar Propolis Essential Oil against Streptococcus mutans

    No full text
    Streptococcus mutans (S. mutans) is a common cariogenic bacterium that secretes glucosyltransferases (GTFs) to synthesize extracellular polysaccharides (EPSs) and plays an important role in plaque formation. Propolis essential oil (PEO) is one of the main components of propolis, and its antibacterial activity has been proven. However, little is known about the potential effects of PEO against S. mutans. We found that PEO has antibacterial effects against S. mutans by decreasing bacterial viability within the biofilm, as demonstrated by the XTT assay, live/dead staining assay, LDH activity assay, and leakage of calcium ions. Furthermore, PEO also suppresses the total of biofilm biomasses and damages the biofilm structure. The underlying mechanisms involved may be related to inhibiting bacterial adhesion and GTFs activity, resulting in decreased production of EPSs. In addition, a CCK8 assay suggests that PEO has no cytotoxicity on normal oral epithelial cells. Overall, PEO has great potential for preventing and treating oral bacterial infections caused by S. mutans

    Cobalt-Catalyzed Cross-Coupling Reactions of Arylboronic Esters and Aryl Halides

    No full text
    An efficient cobalt catalyst system for the Suzuki–Miyaura cross-coupling reaction of arylboronic esters and aryl halides has been identified. In the presence of cobalt­(II)/terpyridine catalyst and potassium methoxide, a diverse array of (hetero)­biaryls have been prepared in moderate to excellent yields

    Multifunctional Cyclotriphosphazene/Hexagonal Boron Nitride Hybrids and Their Flame Retarding Bismaleimide Resins with High Thermal Conductivity and Thermal Stability

    No full text
    A novel hybridized multifunctional filler (CPBN), cyclotriphosphazene/hexagonal boron nitride (hBN) hybrid, was synthesized by chemically coating hBN with hexachlorocyclotriphosphazene and p-phenylenediamine, its structure was systemically characterized. Besides, CPBN was used to develop new flame retarding bismaleimide/<i>o</i>,<i>o</i>′-diallylbisphenol A (BD) resins with simultaneously high thermal conductivity and thermal stability. The nature of CPBN has a strong influence on the flame behavior of the composites. With the addition of only 5 wt % CPBN to BD resin, the thermal conductivity increases 2 times; meanwhile the flame retardancy of BD resin is remarkably increased, reflected by the increased limited oxygen index, much longer time to ignition, significantly reduced heat release rate. The thermogravimetric kinetics, structures of chars and pyrolysis gases, and cone calorimeter tests were investigated to reveal the unique flame retarding mechanism of CPBN/BD composites. CPBN provides multieffects on improving the flame retardancy, especially in forming a protective char layer, which means a more thermally stable and condensed barrier for heat and mass transfer, and thus protecting the resin from further combustion

    Enzyme Activities in the Lignin Metabolism of Chinese Olive (Canarium album) with Different Flesh Characteristics

    No full text
    Lignin is crucial to the formation of fruit texture quality. Here, we aimed to explore the relationship between lignin metabolism and fruit texture by investigating the lignin content, total phenols and their related enzyme activities among three Chinese olive (Canarium album (Lour.) Raeusch) genotypes. Our results showed that lignin deposition moved from the exocarp to the flesh in Chinese olive fruit. The lignin, total phenols and enzyme activities were all different between the three Chinese olive cultivars at each developmental stage. The lignin content was positively correlated with the PAL, 4CL and POD activities. These results demonstrated that lignin metabolism was regulated through the related enzyme activities. Therefore, our findings may provide insight to facilitate further improvement in fruit texture quality in Chinese olive

    Enzyme Activities in the Lignin Metabolism of Chinese Olive (<i>Canarium album</i>) with Different Flesh Characteristics

    No full text
    Lignin is crucial to the formation of fruit texture quality. Here, we aimed to explore the relationship between lignin metabolism and fruit texture by investigating the lignin content, total phenols and their related enzyme activities among three Chinese olive (Canarium album (Lour.) Raeusch) genotypes. Our results showed that lignin deposition moved from the exocarp to the flesh in Chinese olive fruit. The lignin, total phenols and enzyme activities were all different between the three Chinese olive cultivars at each developmental stage. The lignin content was positively correlated with the PAL, 4CL and POD activities. These results demonstrated that lignin metabolism was regulated through the related enzyme activities. Therefore, our findings may provide insight to facilitate further improvement in fruit texture quality in Chinese olive
    corecore